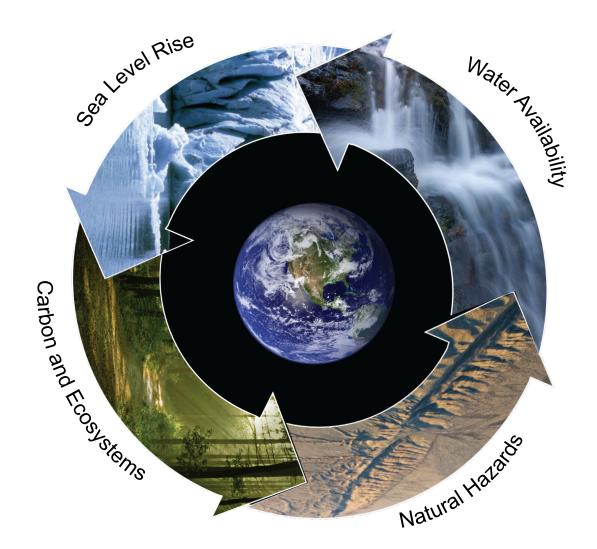


Welcome to ESTF:


JPL's Earth Science Vision for Next Decade

Diane Evans, Director ESTD June 13, 2017

Earth Science Grand Challenge

Making Earth's Complexity Tractable

Combining system engineering expertise with advanced technologies and science expertise to provide reliable and accurate information

Our Quests:

To Understand How Our Planet Is Changing To Use Our Unique Technical Expertise to Serve Our Nation and Its People

Sea Level

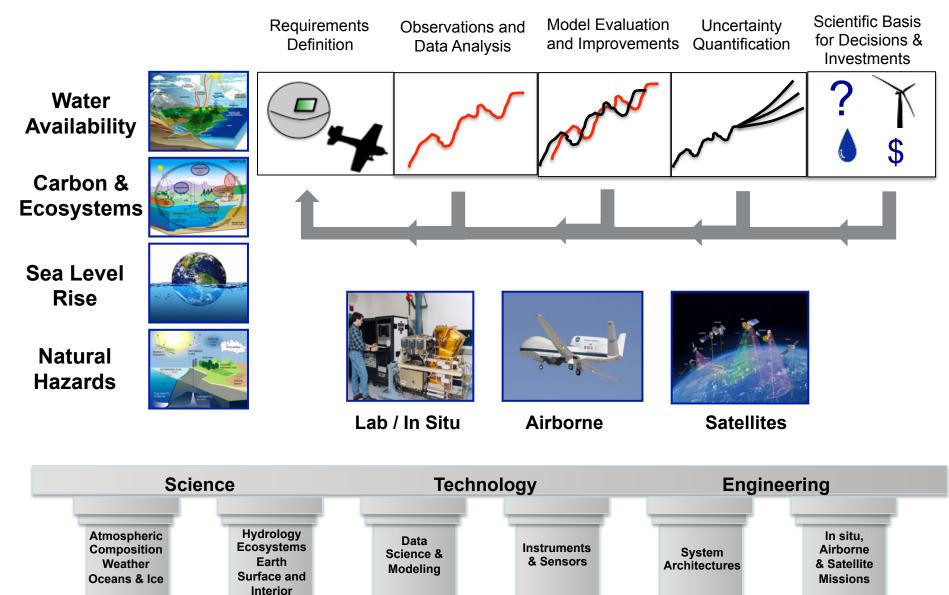
Improve long-term projections of regional sea level rise and the consequences to urban populations and natural ecosystems.

Water

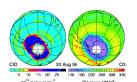
Forecast water shortages 2 weeks, 2 months, and 2 years in advance with quantifiable uncertainties.

Carbon

Improve projections of global food security, forest health & disturbance and biodiversity, as well as the climate and ecosystem responses to anthropogenic forcing agents (e.g. $CO_2 \& CH_4$).

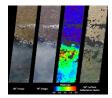

Natural Hazards

Increase the lead-time for solid earth, weather and air quality hazards and improve our capabilities for hazard response and preparedness.


JPL Earth Science

From Science to Actionable Information

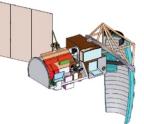
Atmospheric Composition & Air Quality


Chlorine Monoxide and the Ozone Hole: 1996

Ozone Depletion & Recovery

Global-Regional Pollution

Aerosol Classification



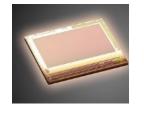
Cloud-Aerosol Interactions

Results

Water Vapor & Temperature

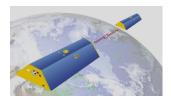
Stratospheric Chemistry

Tropospheric Chemistry



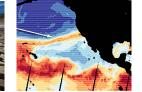
Aerosols

Compact Spectrometer

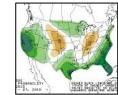

High QE FPA, Grating, and Slits

Submm/mm Sensors

Advanced Cryo-coolers



Formation Flying



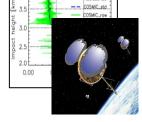
Weather

Precipitation **Extremes**

S2S Forecasting

Cloud-Aerosol Interactions

Evapotranspiration


Severe Storms

Results

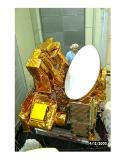
Convection & Water Vapor

Winds

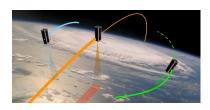
Boundary Layer

Aerosols

Precipitation

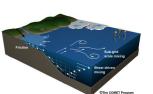


Temperature & Clouds


Passive **Microwave**

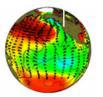
Submm/mm Sensors

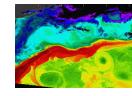
Radars


Formation Flying

Miniaturization for **CubeSats**

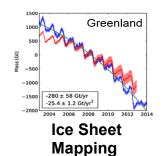
Oceans and Ice



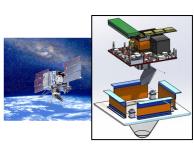

Evaporation rates

Ocean Acidification Heat and Carbon Sequestration

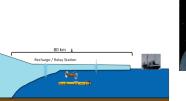
El Niño/ La Niña



Pacific Decadal Oscillation



Mesoscale


Dynamics

Observations

Ocean Currents & Vector Winds

MLD & Ocean Bio/

Geo/Chem

Ocean Topography

Ice Motion and Mass

Time-varying Gravity Field

Quantum devices

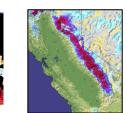
Active Microwave sensors

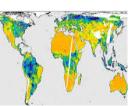
Advanced GPS technologies

Autonomous Navigation & Sampling

Precision Structures

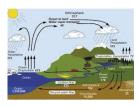
formation flying

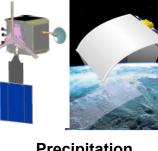

Precision


Hydrology

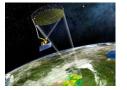
Precipitation Extremes


Snow Pack

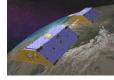

Drought


Flood & Inundation

Extraction


Water Cycle Science

Precipitation

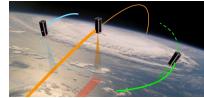

Snow Water Equivalent

Soil Moisture

Surface Water Heights

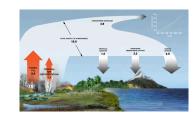
Gravity

Evapotranspiration

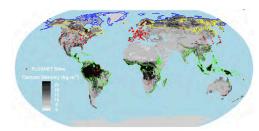

Passive Microwave

Active Microwave Sensors

Advanced Cryo-coolers

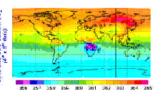


Formation Flying

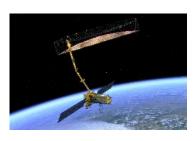


TIR Sensors & Compact spectrometers

Ecosystems


Carbon Fluxes and Feedback

BioDiversity


Plant/Crop Stress


Carbon Cycle

Results

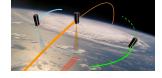

Biomass (InSAR)

Plant Health & Function (Hyperspectral Imaging)

Evapotranspiration (IR Spectral Imaging)

Greenhouse Gases

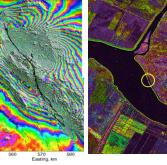
Active Microwave Sensors


> **TIR Sensors** &Compact spectrometers


Compact **Spectrometer &** Adv. FPA

Advanced **Cryo-coolers**

Precision **Formation flying**


Lidar

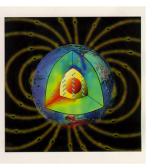
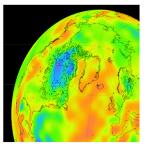
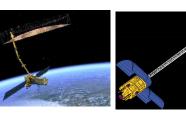

Earth Surface and Interior

Plate **Boundaries**


Human Activities

Magnetic Field

Land Surface Change



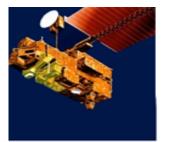
Mantle Dynamics

Magmatic Proces

Technology

Surface Deformation

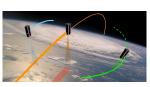
High Resolution Topography


Earth rotation

and terrestrial

reference frame (TRF)

Time-varying **Gravity Field**


Hyperspectral Imaging

Active Microwave Sensors

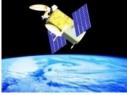
Advanced GPS technologies

Precision Formation flying

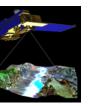
TIR Sensors

Compact spectrometers

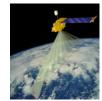
High end computing


JPL Earth Science Flight Projects

Operational


QuikSCAT (1999)

AIRS (2002)


Ocean Surface **Topography Mission** (2008)

ASTER (1999)

TES

(2004)

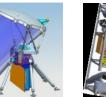
MISR

(1999)

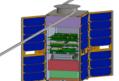
MLS

(2004)

Carbon Cycle: OCO-2


(2014)

Jason 3⁽¹⁾ (2016)


GRACE (2002)

COSMIC-2 A/B(1)(2)


(2017/2018)

COWVR⁽²⁾ (2017)

HF Research (DHFR) Testbed⁽³⁾

Formulation/Development

GRACE-FO (2017)

OCO-3

(2018)

NISAR

(2021)

TEMPEST

(2018)

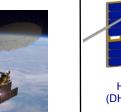
RalnCube (2018)

ECOSTRESS (2018)

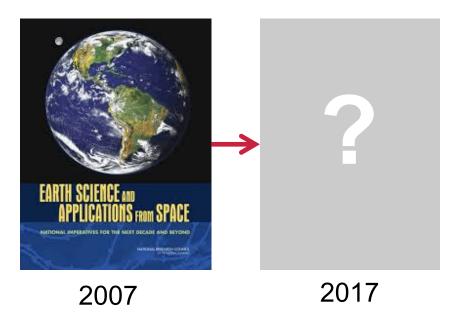
CIRAS (~2018)

MAIA (2019+)

Sentinel 6 (2020/2025)



SWOT (2021)


CloudSat

(2006)

Soil Moisture: SMAP

(2015)

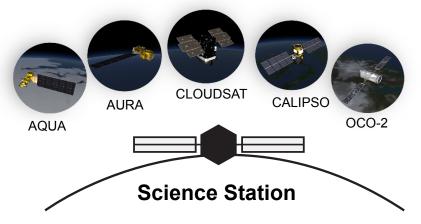
2017 Decadal Survey Looking Ahead

Key Topics in the Statement of Task

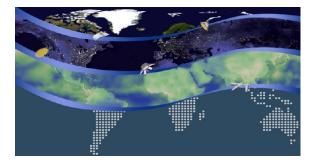
- Balance between Sustained vs Research measurements
- Balance between Assigned vs Competed missions
- Balance between Science vs Applications
- Balance between Flight vs Non-Flight

7-10 Year Earth Science Trends

Individual Science Results


Opportunistic Multisensor Data Sets Actionable Information

- Stakeholder engagement
- Increased spatial and temporal sampling
- Processing and assimilation of large volumes of disparate data
- Quantification of uncertainties for data sets and final products
- Measurement Continuity


Coordinated observations/Constellations

- Increased opportunities for international partnerships
- Small commercial platforms
- Need for multiple advanced, but cost effective sensors

Outcome

- Develop partnerships among science and technology community in advancing NASA Earth science
- Industry engagement in mass producing instruments for constellations
- Mobilize "science" workforce to address grand challenges through unimpeachable formulation and decision-support activities

